|
|
(7 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ===The Loglogistic Distribution===
| | #REDIRECT [[The_Loglogistic_Distribution]] |
| As may be indicated by the name, the loglogistic distribution has certain similarities to the logistic distribution. A random variable is loglogistically distributed if the logarithm of the random variable is logistically distributed. Because of this, there are many mathematical similarities between the two distributions [27]. For example, the mathematical reasoning for the construction of the probability plotting scales is very similar for these two distributions.
| |
| | |
| {{loglogistic probability density function}}
| |
| | |
| {{loglogistic mean median and mode}}
| |
| | |
| {{loglogistic standard deviation}}
| |
| | |
| {{loglogistic reliability function}}
| |
| | |
| {{loglogistic reliable life}}
| |
| | |
| {{loglogistic failure rate function}}
| |
| | |
| {{loglogistic distribution characteristics}}
| |
| | |
| {{loglogistic confidence bounds}}
| |
| | |
| ====Bounds on Time====
| |
| The bounds around time for a given loglogistic percentile, or unreliability, are estimated by first solving the reliability equation with respect to time, as follows:
| |
| | |
| ::<math>\widehat{T}(\widehat{\mu },\widehat{\sigma })={{e}^{\widehat{\mu }+\widehat{\sigma }z}}</math>
| |
| | |
| | |
| :where:
| |
| | |
| ::<math>z=\ln (1-R)-\ln (R)</math>
| |
| | |
| | |
| :or:
| |
| | |
| ::<math>\ln (T)=\widehat{\mu }+\widehat{\sigma }z</math>
| |
| | |
| | |
| :Let:
| |
| | |
| ::<math>u=\ln (T)=\widehat{\mu }+\widehat{\sigma }z</math>
| |
| | |
| | |
| :then:
| |
| | |
| ::<math>{{u}_{U}}=\widehat{u}+{{K}_{\alpha }}\sqrt{Var(\widehat{u})\text{ }}\text{ }</math>
| |
| | |
| | |
| | |
| | |
| ::<math>{{u}_{L}}=\widehat{u}-{{K}_{\alpha }}\sqrt{Var(\widehat{u})\text{ }}\text{ }</math>
| |
| | |
| | |
| :where:
| |
| | |
| | |
| ::<math>Var(\widehat{u})={{(\frac{\partial u}{\partial \mu })}^{2}}Var(\widehat{\mu })+2(\frac{\partial u}{\partial \mu })(\frac{\partial u}{\partial \sigma })Cov(\widehat{\mu },\widehat{\sigma })+{{(\frac{\partial u}{\partial \sigma })}^{2}}Var(\widehat{\sigma })</math>
| |
| | |
| | |
| :or:
| |
| | |
| ::<math>Var(\widehat{u})=Var(\widehat{\mu })+2\widehat{z}Cov(\widehat{\mu },\widehat{\sigma })+{{\widehat{z}}^{2}}Var(\widehat{\sigma })</math>
| |
| | |
| | |
| The upper and lower bounds are then found by:
| |
| | |
| ::<math>{{T}_{U}}={{e}^{{{u}_{U}}}}\text{ (upper bound)}</math>
| |
| | |
|
| |
| | |
| ::<math>{{T}_{L}}={{e}^{{{u}_{L}}}}\text{ (lower bound)}</math>
| |
| | |
| ====A LogLogistic Distribution Example====
| |
| Determine the loglogistic parameter estimates for the data given in Table 10.3.
| |
| | |
| <center><math>\overset{{}}{\mathop{\text{Table 10}\text{.3 - Test data}}}\,</math></center>
| |
| | |
| <center><math>\begin{matrix}
| |
| \text{Data point index} & \text{Last Inspected} & \text{State End time} \\
| |
| \text{1} & \text{105} & \text{106} \\
| |
| \text{2} & \text{197} & \text{200} \\
| |
| \text{3} & \text{297} & \text{301} \\
| |
| \text{4} & \text{330} & \text{335} \\
| |
| \text{5} & \text{393} & \text{401} \\
| |
| \text{6} & \text{423} & \text{426} \\
| |
| \text{7} & \text{460} & \text{468} \\
| |
| \text{8} & \text{569} & \text{570} \\
| |
| \text{9} & \text{675} & \text{680} \\
| |
| \text{10} & \text{884} & \text{889} \\
| |
| \end{matrix}</math></center>
| |
| | |
| | |
| Using Times-to-failure data under the Folio Data Type and the My data set contains interval and/or left censored data under Times-to-failure data options to enter the above data, the computed parameters for maximum likelihood are calculated to be:
| |
| | |
| ::<math>\begin{align}
| |
| & {{{\hat{\mu }}}^{\prime }}= & 5.9772 \\
| |
| & {{{\hat{\sigma }}}_{{{T}'}}}= & 0.3256
| |
| \end{align}</math>
| |
| | |
| | |
| For rank regression on <math>X\ \ :</math>
| |
| | |
| ::<math>\begin{align}
| |
| & \hat{\mu }= & 5.9281 \\
| |
| & \hat{\sigma }= & 0.3821
| |
| \end{align}</math>
| |
| | |
| | |
| For rank regression on <math>Y\ \ :</math>
| |
| | |
| ::<math>\begin{align}
| |
| & \hat{\mu }= & 5.9772 \\
| |
| & \hat{\sigma }= & 0.3256
| |
| \end{align}</math>
| |