|
|
(11 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| ====Example 9====
| | #REDIRECT [[ReliaSoft Examples]] |
| A group of 20 units are put on a life test with the following results.
| |
| | |
| <center><math>\begin{matrix}
| |
| Number & State & State \\
| |
| in State & (F or S) & End Time \\
| |
| 3 & F & 9 \\
| |
| 1 & S & 9 \\
| |
| 1 & F & 11 \\
| |
| 1 & S & 12 \\
| |
| 1 & F & 13 \\
| |
| 1 & S & 13 \\
| |
| 1 & S & 15 \\
| |
| 1 & F & 17 \\
| |
| 1 & F & 21 \\
| |
| 1 & S & 22 \\
| |
| 1 & S & 24 \\
| |
| 1 & S & 26 \\
| |
| 1 & F & 28 \\
| |
| 1 & F & 30 \\
| |
| 1 & S & 32 \\
| |
| 2 & S & 35 \\
| |
| 1 & S & 39 \\
| |
| 1 & S & 41 \\
| |
| \end{matrix}</math></center>
| |
| | |
| Use the Kaplan-Meier estimator to determine the reliability estimates for each failure time.
| |
| | |
| =====Solution to Example 9=====
| |
| Using the data and Eqn. (kapmeier), the following table can be constructed:
| |
| | |
| <center><math>\begin{matrix}
| |
| State & Number of & Number of & Available & {} & {} \\
| |
| End Time & Failures, {{r}_{i}} & Suspensions, {{s}_{i}} & Units, {{n}_{i}} & \tfrac{{{n}_{i}}-{{r}_{i}}}{{{n}_{i}}} & \mathop{}_{}^{}\tfrac{{{n}_{i}}-{{r}_{i}}}{{{n}_{i}}} \\
| |
| 9 & 3 & 1 & 20 & 0.850 & 0.850 \\
| |
| 11 & 1 & 0 & 16 & 0.938 & 0.797 \\
| |
| 12 & 0 & 1 & 15 & 1.000 & 0.797 \\
| |
| 13 & 1 & 1 & 14 & 0.929 & 0.740 \\
| |
| 15 & 0 & 1 & 12 & 1.000 & 0.740 \\
| |
| 17 & 1 & 0 & 11 & 0.909 & 0.673 \\
| |
| 21 & 1 & 0 & 10 & 0.900 & 0.605 \\
| |
| 22 & 0 & 1 & 9 & 1.000 & 0.605 \\
| |
| 24 & 0 & 1 & 8 & 1.000 & 0.605 \\
| |
| 26 & 0 & 1 & 7 & 1.000 & 0.605 \\
| |
| 28 & 1 & 0 & 6 & 0.833 & 0.505 \\
| |
| 30 & 1 & 0 & 5 & 0.800 & 0.404 \\
| |
| 32 & 0 & 1 & 4 & 1.000 & 0.404 \\
| |
| 35 & 0 & 1 & 3 & 1.000 & 0.404 \\
| |
| 39 & 0 & 1 & 2 & 1.000 & 0.404 \\
| |
| 41 & 0 & 1 & 1 & 1.000 & 0.404 \\
| |
| \end{matrix}</math></center>
| |
| | |
| As can be determined from the preceding table, the reliability estimates for the failure times are:
| |
| | |
| <center><math>\begin{matrix}
| |
| Failure Time & Reliability Est. \\
| |
| 9 & 85.0% \\
| |
| 11 & 79.7% \\
| |
| 13 & 74.0% \\
| |
| 17 & 67.3% \\
| |
| 21 & 60.5% \\
| |
| 28 & 50.5% \\
| |
| 30 & 40.4% \\
| |
| \end{matrix}</math></center>
| |
| ====Example 10====
| |
| A group of 55 units are put on a life test during which the units are evaluated every 50 hours, with the following results:
| |
| | |
| <center><math>\begin{matrix}
| |
| Start & End & Number of & Number of \\
| |
| Time & Time & Failures, {{r}_{i}} & Suspensions, {{s}_{i}} \\
| |
| 0 & 50 & 2 & 4 \\
| |
| 50 & 100 & 0 & 5 \\
| |
| 100 & 150 & 2 & 2 \\
| |
| 150 & 200 & 3 & 5 \\
| |
| 200 & 250 & 2 & 1 \\
| |
| 250 & 300 & 1 & 2 \\
| |
| 300 & 350 & 2 & 1 \\
| |
| 350 & 400 & 3 & 3 \\
| |
| 400 & 450 & 3 & 4 \\
| |
| 450 & 500 & 1 & 2 \\
| |
| 500 & 550 & 2 & 1 \\
| |
| 550 & 600 & 1 & 0 \\
| |
| 600 & 650 & 2 & 1 \\
| |
| \end{matrix}</math></center>
| |
| | |
| | |
| | |
| =====Solution to Example 10=====
| |
| The reliability estimates for the simple actuarial method can be obtained by expanding the data table to include terms used in calculation of the reliability estimates for Eqn. (simpact):
| |
| | |
| <center><math>\begin{matrix}
| |
| Start & End & Number of & Number of & Available & {} & {} \\
| |
| Time & Time & Failures, {{r}_{i}} & Suspensions, {{s}_{i}} & Units, {{n}_{i}} & 1-\tfrac{{{r}_{j}}}{{{n}_{j}}} & \mathop{}_{}^{}1-\tfrac{{{r}_{j}}}{{{n}_{j}}} \\
| |
| 0 & 50 & 2 & 4 & 55 & 0.964 & 0.964 \\
| |
| 50 & 100 & 0 & 5 & 49 & 1.000 & 0.964 \\
| |
| 100 & 150 & 2 & 2 & 44 & 0.955 & 0.920 \\
| |
| 150 & 200 & 3 & 5 & 40 & 0.925 & 0.851 \\
| |
| 200 & 250 & 2 & 1 & 32 & 0.938 & 0.798 \\
| |
| 250 & 300 & 1 & 2 & 29 & 0.966 & 0.770 \\
| |
| 300 & 350 & 2 & 1 & 26 & 0.923 & 0.711 \\
| |
| 350 & 400 & 3 & 3 & 23 & 0.870 & 0.618 \\
| |
| 400 & 450 & 3 & 4 & 17 & 0.824 & 0.509 \\
| |
| 450 & 500 & 1 & 2 & 10 & 0.900 & 0.458 \\
| |
| 500 & 550 & 2 & 1 & 7 & 0.714 & 0.327 \\
| |
| 550 & 600 & 1 & 0 & 4 & 0.750 & 0.245 \\
| |
| 600 & 650 & 2 & 1 & 3 & 0.333 & 0.082 \\
| |
| \end{matrix}</math></center>
| |
| | |
| As can be determined from the preceding table, the reliability estimates for the failure times are:
| |
| | |
| <center><math>\begin{matrix}
| |
| Failure Period & Reliability \\
| |
| End Time & Estimate \\
| |
| 50 & 96.4% \\
| |
| 150 & 92.0% \\
| |
| 200 & 85.1% \\
| |
| 250 & 79.8% \\
| |
| 300 & 77.0% \\
| |
| 350 & 71.1% \\
| |
| 400 & 61.8% \\
| |
| 450 & 50.9% \\
| |
| 500 & 45.8% \\
| |
| 550 & 32.7% \\
| |
| 600 & 24.5% \\
| |
| 650 & 8.2% \\
| |
| \end{matrix}</math></center>====Example 11====
| |
| Find reliability estimates for the data in Example 10 using the standard actuarial method.
| |
| =====Solution to Example 11=====
| |
| The solution to this example is similar to that of Example 10, with the exception of the inclusion of the <math>n_{i}^{\prime }</math> term, which is used in Eqn. (standact). Applying this equation to the data, we can generate the following table:
| |
| | |
| <center><math>\begin{matrix}
| |
| Start & End & Number of & Number of & Adjusted & {} & {} \\
| |
| Time & Time & Failures, {{r}_{i}} & Suspensions, {{s}_{i}} & Units, n_{i}^{\prime } & 1-\tfrac{{{r}_{j}}}{n_{j}^{\prime }} & \mathop{}_{}^{}1-\tfrac{{{r}_{j}}}{n_{j}^{\prime }} \\
| |
| 0 & 50 & 2 & 4 & 53 & 0.962 & 0.962 \\
| |
| 50 & 100 & 0 & 5 & 46.5 & 1.000 & 0.962 \\
| |
| 100 & 150 & 2 & 2 & 43 & 0.953 & 0.918 \\
| |
| 150 & 200 & 3 & 5 & 37.5 & 0.920 & 0.844 \\
| |
| 200 & 250 & 2 & 1 & 31.5 & 0.937 & 0.791 \\
| |
| 250 & 300 & 1 & 2 & 28 & 0.964 & 0.762 \\
| |
| 300 & 350 & 2 & 1 & 25.5 & 0.922 & 0.702 \\
| |
| 350 & 400 & 3 & 3 & 21.5 & 0.860 & 0.604 \\
| |
| 400 & 450 & 3 & 4 & 15 & 0.800 & 0.484 \\
| |
| 450 & 500 & 1 & 2 & 9 & 0.889 & 0.430 \\
| |
| 500 & 550 & 2 & 1 & 6.5 & 0.692 & 0.298 \\
| |
| 550 & 600 & 1 & 0 & 4 & 0.750 & 0.223 \\
| |
| 600 & 650 & 2 & 1 & 2.5 & 0.200 & 0.045 \\
| |
| \end{matrix}</math></center>
| |
| | |
| | |
| As can be determined from the preceding table, the reliability estimates for the failure times are:
| |